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Abstract. A weak form Galerkin finite element model for the nonlinear quasi-static and

fully transient analysis of initially straight viscoelastic beams is developed using the kine-

matic assumptions of the third-order Reddy beam theory. The formulation assumes linear

viscoelastic material properties and is applicable to problems involving small strains and

moderate rotations. The viscoelastic constitutive equations are efficiently discretized using

the trapezoidal rule in conjunction with a two-point recurrence formula. Locking is avoided

through the use of standard low order reduced integration elements as well through the

employment of a family of elements constructed using high polynomial-order Lagrange and

Hermite interpolation functions.

1. Introduction

Materials exhibiting characteristics of both elastic solids as well as viscous fluids are com-

monly known as viscoelastic materials. Prominent examples include metals at elevated tem-

peratures, polymers, rubbers and concrete. The theoretical foundations of viscoelasticity

are well established. We refer to the standard texts of Flügge [14], Christensen [9], Findley

[13] and Reddy [36] for an overview on the theory of viscoelastic material behavior, as well

as the classical analytical solution techniques that may be used to solve simple viscoelastic

boundary value problems. Viscoelastic materials are often highly desirable for use in struc-

tural components, due to their natural ability to dampen out structural vibrations. The

capability to satisfactory predict the mechanical response of viscoelastic structures therefore

becomes of great importance in engineering design scenarios.

A variety of beam theory based finite element models have been presented in the literature

for the analysis of viscoelastic structures. The majority of these formulations employ some

form of either the Euler-Bernoulli or Timoshenko beam theories and are mostly restricted

to small strain analysis. The formulations differ in how the convolution form of the vis-

coelastic constitutive equations are temporally discretized. A popular approach adopted by
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many researchers is to employ the Laplace transform method directly in the construction

of the finite element equations [8, 1, 39]. In this approach, terms associated with the time

domain, including the convolution integral, are transformed into variables associated with

the Laplace space s. A successful numerical simulation therefore requires an efficient and

accurate inversion of the solution in s space back to the time domain. Many of the key ideas

are presented in work of Aköz and Kadioglu [1], wherein a Timoshenko beam element is de-

veloped using mixed variational principles. In their work, the finite element model requires

numerical inversion from the Laplace-Carson domain back to the time domain. Temel et al.

[39] utilized the Durbin’s inverse Laplace transform method in their analysis of cylindrical

helical rods (based on the Timoshenko beam hypotheses).

Additional numerical formulations for viscoelastic beams are based on the Fourier trans-

form method [7], the anelastic displacement (ADN) procedure [40, 28] and the Golla-Hughes-

McTavish (GHM) method [24, 25, 4, 3]. It has been noted that when the relaxation moduli

are given as Prony series, the convolution form of linear viscoelastic constitutive equations

may be equivalently expressed as a set of ordinary differential equations in terms of a col-

lection of internal strain variables. Numerical discretization procedures exploiting this ODE

form of the viscoelastic constitutive equations have been successfully adopted in the works

of Johnson et al. [19] and Austin and Inman [2].

The formulations described above are restricted to a class of problems involving infin-

itesimal strains and small deflections. Among the finite element formulations appearing

in the literature for nonlinear viscoelastic shell structures are the works of Kennedy [21],

Oliveira and Creus [27] and Hammerand and Kapania [16]. More recently, Payette and

Reddy [29] presented quasi-static finite element formulations for Euler-Bernoulli and Timo-

shenko beams that allow for loading scenarios that produce large transverse displacements,

moderate rotations and small strains. This previous work may be viewed as a bridge between

the formulations associated with either: (a) small strains or (b) fully finite deformations. In

this prior work, the trapezoidal rule was employed in conjunction with a two-point recur-

rence formula for efficient temporal integration of the viscoelastic constitutive equations.

The objective of the present paper is to extend the work of Payette and Reddy to create

an efficient locking-free nonlinear finite element framework for the analysis of viscoelastic

beam structures based on the high-order Reddy beam theory [30, 18, 41] for use in both

quasi-static as well as fully dynamic analysis.
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2. Kinematics of deformation

2.1. The displacement field. There are a variety of beam theories that have been success-

fully employed in the mechanical analysis of structural elements. Such theories are typically

formulated in terms of truncated Taylor series expansions of the components of the dis-

placement field with respect to the thickness coordinate. The most simple and commonly

employed theories are the Euler-Bernoulli beam theory (EBT) and the Timoshenko beam

theory (TBT). The major deficiency associated with the EBT is failure to account for defor-

mations associated with shearing. The TBT relaxes the normality assumption of the EBT

and admits a constant state of shear strain on a given cross-section. As a result, the TBT

necessitates the use of shear correction coefficients in order to accurately predict transverse

displacements. The third-order Reddy beam theory (RBT) was introduced to both account

for the effects of shear strains and to also produce a parabolic variation of the shear strain

through the thickness [30, 18, 41]. As a result, in the RBT there is no need to introduce

shear correction coefficients.

Before presenting the displacement field associated with the RBT we first introduce some

standard notation. We let B ⊂ R3, an open and bounded set, denote the material or

reference configuration of the beam. The material configuration may be expressed as B =

Ω × A, where Ω = (0, L) and L is the initial length of the beam. In addition the quantity

A represents the beam’s cross-sectional area. A typical material point belonging to B is

denoted as X = (X,Y, Z). Likewise the spatial or current configuration of the beam is

denoted by Bt and the associated points are expressed as x = (x, y, z). Points in the spatial

configuration are related to points in the material configuration by the standard bijective

mapping χ : B × R → Bt. As a result x = χ(X, t). The displacement field associated with

the mapping may be expressed in the usual manner as u(X, t) = χ(X, t)−X.

In the present work, we constrain the displacement field to conform to the kinematic

assumptions of the Reddy beam theory. The displacement field in the Reddy beam theory

(for a beam with a rectangular cross section) is taken as

u(X,Y, Z, t) = u0(X, t) + Zϕx(X, t)− Z3c1

(
ϕx(X, t) +

∂w0

∂X

)
(1a)

w(X,Y, Z, t) = w0(X, t) (1b)

where the X coordinate is taken along the beam length, the Z coordinate along the thickness

direction of the beam, u0 is the axial displacement of a point on the mid-plane (X, 0, 0) of the
3



beam and w0 represents the transverse deflection of the mid-plane. When the deformation

is small the parameter ϕx(X, t) may be interpreted as the rotation of the transverse normal.

The constant c1 is equal to c1 = 4/(3h2), where h is the height of the beam and b is the

beam width. The displacement field of the Reddy beam theory suggests that a straight line

perpendicular to the undeformed mid-plane becomes a cubic curve following deformation, as

can be seen in Fig. 1.

Z,w

X,u

X

Z

∂X

∂w0

−φ
x

(u,w)

u0 w0( , )

(a)

(b)

Figure 1. Deformation of a beam structure according to the third-order
Reddy beam theory: (a) undeformed configuration and (b) deformed configu-
ration.

2.2. The effective strain tensor for the simplified theory. In the mechanical analysis

of deformable solids, it is necessary to employ stress and strain measures that are consistent

with the deformations realized [34, 6]. When the deformations of the body are large, there

are a variety of strain measures that may be employed. In our formulation we employ a total

Lagrangian description of the deformation. In such analysis, the Green-Lagrange strain

tensor E constitutes an appropriate measure of the strain at a point in the body. For the

present analysis the non-zero components of E may be expressed as

EXX =
∂u

∂X
+

1

2

[(
∂u

∂X

)2

+

(
∂w

∂X

)2]
(2a)

EXZ =
1

2

(
∂u

∂Z
+
∂w

∂X
+
∂u

∂X

∂u

∂Z

)
(2b)

EZZ =
1

2

(
∂u

∂Z

)2

(2c)

In the present formulation we wish to develop a finite element framework that is applicable

under loading conditions that produce large transverse displacements, moderate rotations
4



(10−15◦) and small strains [32]. Under such conditions it is possible to neglect the underlined

terms in the above definition of the Green-Lagrange strain tensor. Consequently, we employ a

reduced form of the Green-Lagrange strain tensor, denoted by ε, whose non-zero components

may be expressed as

εxx =
∂u0
∂x

+
1

2

(
∂w0

∂x

)2

+ z
∂ϕx

∂x
− z3c1

(
∂ϕx

∂x
+
∂2w0

∂x2

)
(3a)

γxz = 2εxz =
(
1− c2z

2
)(

ϕx +
∂w0

∂x

)
(3b)

where c2 = 3c1. The strain components associated with the linearized strain tensor ε are

commonly called the the von Kármán strain components. For a comparison of numerical

results obtained using the above simplified theory with the full nonlinear theory for elastic

structures, we refer to the work of Başar et al. [5]. It is important to note that the material

coordinates appearing in the definition of the reduced strain components and throughout the

remainder of this paper are denoted as (x, y, z) as a reminder that the present formulation

is applicable to small strains and moderate rotations, and is therefore a linearization of the

more general finite deformation theory.

2.3. Linear viscoelastic constitutive equations. For linear viscoelastic materials, the

constitutive equations relating the components of the second Piola Kirchhoff stress tensor S

to the Green-Lagrange strain E may be expressed in terms of the following set of integral

equations

S(t) = C(0) : E(t) +
∫ t

0

Ċ(t− s) : E(s)ds (4)

where Ċ(t − s) ≡ dC(t − s)/d(t − s) and C(t) is the fourth-order viscoelasticity relaxation

tensor. In the present analysis the above expression reduces to

σxx(x, t) = E(0)εxx(x, t) +

∫ t

0

Ė(t− s)εxx(x, s)ds (5a)

σxz(x, t) = G(0)γxz(x, t) +

∫ t

0

Ġ(t− s)γxz(x, s)ds (5b)

where σxx and σxz are the nonzero components of second Piola Kirchhoff stress tensor used in

the present simplified formulation. The quantities E(t) and G(t) are the relaxation moduli.

The specific forms of E(t) and G(t) will depend upon the material model employed. For the

present analysis we assume that these relaxation functions can be expanded as Prony series
5



of order NPS as

E(t) = E0 +
NPS∑
l=1

Ēl(t), G(t) = G0 +
NPS∑
l=1

Ḡl(t) (6)

where Ēl(t) and Ḡl(t) have been defined as (following the generalized Maxwell model)

Ēl(t) = Ele
−t/τEl , Ḡl(t) = Gle

−t/τGl (7)

It is important to emphasize that the Prony series representation of the viscoelastic relax-

ation moduli is critical for the implementation of efficient temporal numerical integration

algorithms of the integral type viscoelastic constitutive equations considered in this paper.

We note in passing that effective temporal integration algorithms for alternative classes

of viscoelastic constitutive equations, such as fractional derivative models, have also been

adopted in the literature (see for example Refs. [10, 11, 12, 15, 42]).

3. Weak form Galerkin finite element model

3.1. Weak formulation. The weak form Galerkin finite element model of the third order

Reddy beam theory may be developed by applying the principle of virtual displacements to

a typical beam as viewed in the reference configuration. The dynamic form of the virtual

work statement may therefore be expressed as

δW = −δK + δW I + δWE

=

∫
B

(
δu · ρ0ü+ δE : S− δu · ρ0b

)
dV −

∫
Γσ

δu · t0dS

∼=
∫ L

0

∫
A

(
δu · ρ0ü+ δε : σ − δu · ρ0b

)
dAdx−

∫
Γσ

δu · t0dS ≡ 0

(8)

where δK is the virtual kinetic energy, δW I is the internal virtual work and δWE is the

external virtual work. The additional quantities ρ0, b and t0 are the density, body force and

traction vector, respectively. The above expression constitutes the weak form of the classical

Euler-Lagrange equations of motion of a continuous body.

In the finite element method we assume that the material domain Ω̄ = [0, L] is partitioned

into a set of NE non-overlapping sub-domains Ω̄e = [xea, x
e
b], called finite elements, such that

Ω̄ =
∪NE

e=1 Ω̄
e. The resulting variational problem associated with the weak formulation of

the Reddy beam equations may therefore be expressed as follows: find (u0, w0, ϕx) ∈ V such
6



that for all (δu0, δw0, δϕx) ∈ X the following expressions hold within each element:

0 =

∫ xb

xa

(
I0δu0ü0 +

∂δu0
∂x

Nxx − δu0f

)
dx− δu0(xa)Q1 − δu0(xb)Q5 (9a)

0 =

∫ xb

xa

[
I0δw0ẅ0 +

∂δw0

∂x

(
c21I6

∂ẅ0

∂x
− J4ϕ̈x

)
+
∂δw0

∂x

(
∂w0

∂x
Nxx +Qx − c2Rx

)
(9b)

−∂
2δw0

∂x2
c1Pxx − δw0q

]
dx−Q2δw0(xa)−Q6δw0(xb)− Q3

(
−∂δw0

∂x

)∣∣∣∣
x=xa

−Q7

(
−∂δw0

∂x

)∣∣∣∣
x=xb

0 =

∫ xb

xa

[
δϕx

(
−J4

∂ẅ0

∂x
+K2ϕ̈x

)
+ δϕx(Qx − c2Rx) +

∂δϕx

∂x
(Mxx − c1Pxx)

]
dx (9c)

−Q4δϕx(xa)−Q8δϕx(xb)

where V and X are appropriate function spaces. It is important to note that in the finite ele-

ment implementation, w0 must be approximated using Hermite polynomials. Consequently,

the nodal degrees of freedom of the resulting finite element model will contain not only w0

but also its derivative. For the sake of brevity we have omitted the superscript e from quan-

tities appearing in the above equations (e.g., xa and xb) and throughout the remainder of

this work. The quantities f and q appearing above are the distributed axial and transverse

loads respectively. We have also introduced the following constants

Ii = ρ0Di = ρ0

∫
A

zidA, J4 = c1(I4 − c1I6), K2 = I2 − 2c1I4 + c21I6 (10)

The internal stress resultants Nxx, Mxx, Pxx, Qx and Rx are defined as
Nxx

Mxx

Pxx

 =

∫
A


1

z

z3

σxxdA,

{
Qx

Rx

}
=

∫
A

{
1

z2

}
σxzdA (11)

and can be expressed in terms of the generalized displacements (u0, w0, ϕx) through the use

of the viscoelastic constitutive equations. The quantities Nxx, Mxx and Qx are the internal

axial force, bending moment and shear force. In addition, Pxx and Rx are higher order stress

resultants that arise in the third order beam theory due to the cubic expansion of the axial

displacement field. The quantities Qj (j=1,..,8) are the externally applied generalized nodal

forces.

7



3.2. Semi-discrete finite element equations. In this subsection we develop the semi-

discrete finite element equations associated with the third order Reddy beam theory. Within

a typical finite element the dependent variables may be adequately approximated using the

following interpolation formulas

u0(x, t) =
n∑

j=1

∆
(1)
j (t)ψ

(1)
j (x), w0(x, t) =

2n∑
j=1

∆
(2)
j (t)ψ

(2)
j (x)

ϕx(x, t) =
n∑

j=1

∆
(3)
j (t)ψ

(1)
j (x)

(12)

where a space-time decoupled formulation has been adopted and n represents the number

of nodes per element. In the finite element method, the geometry of each element is char-

acterized using the standard isoparametric mapping from the master element Ω̂e = [−1,+1]

to the physical element Ω̄e = [xea, x
e
b]. The quantities ∆

(1)
j (t), ∆

(2)
j (t) and ∆

(3)
j (t) are the

generalized displacements at the element nodes. In addition ψ
(1)
j (x) and ψ

(2)
j (x) are the

(n− 1)th-order Lagrange and (2n− 1)th-order Hermite interpolation functions respectively.

Inserting Equation Eq. (12) into Eqs. (9a) through (9c) results in the semi-discrete finite

element equations for the RBT. The resulting set of equations for a typical element may be

expressed as at the current time t as

[M e]{∆̈e}+ [Ke]{∆e}+
∫ t

0

{Λe(t, s)}ds = {F e} (13)

The element level equations may be partitioned into the following equivalent set of expres-

sions

[Mαβ]{∆̈(β)}+ [Kαβ]{∆(β)}+
∫ t

0

{Λ(α)(t, s)}ds = {F (α)} (14)

where α and β range from 1 to 3 and Einstein’s summation convention is implied over β.

Expressions for determining the components of the partitioned element coefficient matrices

and vectors are given explicitly in Appendix A.

3.3. Fully-discrete finite element equations. In this subsection we develop the fully

discretized finite element equations for the Reddy beam theory. We begin by partitioning

the time interval [0, τ ] ⊂ R of interest in the analysis, where τ > 0, into a set of N non-

overlapping subintervals such that [0, τ ] =
∪N

k=1 Ik, and Ik = [tk, tk+1]. The solution may

then be obtained incrementally by solving an initial value problem within each subinter-

val Ik, where we assume that the solution is known at t = tk. Within each subregion it is
8



therefore necessary to introduce approximations for both the temporal derivatives of the gen-

eralized displacements (resulting from the inertia terms) as well as the convolution integrals

(resulting from the viscoelastic constitutive model of the material). Since temporal integra-

tion of the inertia terms is relatively straightforward, we restrict the current discussion to

discretization of the quasi-static form of the semi-discrete finite element equations only. In

this work, we approximate the convolution integrals using the trapezoidal rule within each

time subinterval. We further introduce a two-point recurrence formula, associated with a set

of history variables that are evaluated at the quadrature points, that is utilized to effectively

advance the numerical solution from one time step to the next such that data history is

only necessary from the immediate previous time step. Although not entirely the same, the

adopted procedure has its roots in many of the key ideas presented in the pioneering work

of Taylor et al. [38], where the finite element method was first employed to solve problems

in viscoelasticity using algorithms based on recurrence formulas.

We assume, without loss of generality, that the quasi-static semi-discrete finite element

equations have been successfully integrated temporally up until t = tk. Our goal, therefore,

is to numerically integrate the finite element equations over the subinterval Ik to obtain the

solution for the generalized displacements at t = tk+1. Before proceeding we must empha-

size that all subsequent discussions regarding efficient recurrence based temporal integration

strategies rely on the following multiplicative decompositions of the Prony series terms ap-

pearing in the definition of the relaxation moduli [37]

˙̄El(tk+1 − s) = e−∆tk+1/τ
E
l ˙̄El(tk − s), ˙̄Gl(tk+1 − s) = e−∆tk+1/τ

G
l ˙̄Gl(tk − s) (15)

where ∆tk+1 = tk+1 − tk is the time step associated with subinterval Ik. With the above

formulas in mind, we note that the components of Λα
i (tk+1, s) may be conveniently expressed

as

Λα
i (tk+1, s) =

nα∑
j=1

jΛ̄α
i (tk+1, s) (16)

where n1 = 1, n2 = 3 and n3 = 2. The components jΛ̄α
i (tk+1, s) can be decomposed

multiplicatively using the following general formula

jΛ̄α
i (tk+1, s) =

NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk+1)

j
lβ

α(∆tk+1)
j
lmκ

α(tk, s)Wm (17)

9



In the above expression we have employed the Gauss-Legendre quadrature rule in evaluation

of all spatial integrals (resulting in summation over m). The quantity Wm represents the

mth quadrature weight associated with the Gauss-Legendre quadrature rule. Summation

over l is due to the Prony series representation of the relaxation moduli. The multiplicative

decomposition of each jΛ̄α
i (tk+1, s) is essential for the recurrence based integration strategy.

The components of j
mχ

α
i (tk+1) are used to store the discrete finite element test functions as

well as any nonlinear quantities associated with the first variation of the simplified Green-

Lagrange strain tensor. In the present formulation the components of j
mχ

α
i (tk+1) are defined

as

1
mχ

1
i (tk+1) =

dψ
(1)
i (xm)

dx
(18a)

1
mχ

2
i (tk+1) =

∂w0(xm, tk+1)

∂x

dψ
(2)
i (xm)

dx
(18b)

2
mχ

2
i (tk+1) =

d2ψ
(2)
i (xm)

dx2
(18c)

3
mχ

2
i (tk+1) =

dψ
(2)
i (xm)

dx
(18d)

1
mχ

3
i (tk+1) =

1
mχ

1
i (tk+1) (18e)

2
mχ

3
i (tk+1) = ψ

(1)
i (xm) (18f)

In the above expression, xm represents the value of x as evaluated at the mth quadrature

point of a given finite element. The isoparametric mapping Ω̂e � Ω̄e used to characterize the

geometry of each element allows for simple evaluation of such expressions. The components

of j
lβ

α(∆tk+1) are defined as

1
l β

1(∆tk+1) =
1
l β

2(∆tk+1) =
2
l β

2(∆tk+1) =
1
l β

3(∆tk+1) = e−∆tk+1/τ
E
l

3
l β

2(∆tk+1) =
2
l β

3(∆tk+1) = e−∆tk+1/τ
G
l

(19)

Likewise, the components of j
lmκ

α(tk, s) may be determined using the following formulas

1
lmκ

1(tk, s) =
˙̄El(tk − s)D0

[
∂u0(xm, s)

∂x
+

1

2

(
∂w0(xm, s)

∂x

)2]
(20a)

1
lmκ

2(tk, s) =
1
lmκ

1(tk, s) (20b)

2
lmκ

2(tk, s) =
˙̄El(tk − s)

(
c21D6

∂2w0(xm, s)

∂x2
− L4

∂ϕx(xm, s)

∂x

)
(20c)

10



3
lmκ

2(tk, s) =
˙̄Gl(tk − s)Âs

(
∂w0(xm, s)

∂x
+ ϕx(xm, s)

)
(20d)

1
lmκ

3(tk, s) =
˙̄El(tk − s)

(
M2

∂ϕx(xm, s)

∂x
− L4

∂2w0(xm, s)

∂x2

)
(20e)

2
lmκ

3(tk, s) =
3
lmκ

2(tk, s) (20f)

It is important to note that the components of j
lmκ

α(tk, s) have been defined such that the

following multiplicative recurrence formulas holds

j
lmκ

α(tk+1, s) =
j
lβ

α(∆tk+1)
j
lmκ

α(tk, s) (21)

The above expressions are admissible on account of the assumption that the relaxation

parameters are expressed in terms of Prony series.

We assume that at t = tk the components of the following expression are known∫ tk

0

jΛ̄α
i (tk, s)ds =

NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk)

j
lmX

α(tk)Wm (22)

where j
lmX

α(tk) is a set of history variables (stored at the quadrature points of each element)

that are of the form
j
lmX

α(tk) =

∫ tk

0

j
lmκ

α(tk, s)ds (23)

We note that j
lmX

α(0) = 0. At t = tk the above history variables are known and there is no

need to explicitly evaluate the expression appearing on the right hand side of Eq. (23). At

the subsequent time step t = tk+1 Eq. (22) may be written as∫ tk+1

0

jΛ̄α
i (tk+1, s)ds =

∫ tk

0

jΛ̄α
i (tk+1, s)ds+

∫ tk+1

tk

jΛ̄α
i (tk+1, s)ds

=
NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk+1)

j
lβ

α(∆tk+1)
j
lmX

α(tk)Wm

+

∫ tk+1

tk

jΛ̄α
i (tk+1, s)ds

(24)

It is important to note that we have expressed the first integral on the right hand side of

the above equation in terms of j
lmX

α(tk) (which is known from the previous time step).

To integrate the remaining expression in Eq. (24) over the subinterval Ik we employ the

11



trapezoidal rule which may be expressed as∫ tk+1

tk

jΛ̄α
i (tk+1, s)ds ∼=

∆tk+1

2

[
jΛ̄α

i (tk+1, tk) +
jΛ̄α

i (tk+1, tk+1)
]

=
∆tk+1

2

NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk+1)

j
lβ

α(∆tk+1)
[
j
lmκ

α(tk, tk)

+j
lmκ

α(tk, tk+1)
]
Wm

(25)

As a result, Eq. (24) can be written in the following simplified form∫ tk+1

0

jΛ̄α
i (tk+1, s)ds =

NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk+1)

j
lmX

α(tk+1)Wm (26)

where

j
lmX

α(tk+1) =
∆tk+1

2
j
lβ

α(∆tk+1)
[
j
lmκ

α(tk, tk) +
j
lmκ

α(tk, tk+1)
]

+ j
lβ

α(∆tk+1)
j
lmX

α (tk)

(27)

As a result, in Eq. (26) we have developed a general expression for integrating the viscoelastic

terms up to any discrete instance in time. The expression relies on a recurrence relationship

defined in terms of the set of history variables j
lmX

α(tk+1). These variables must be stored

in memory at the immediate previous time step and may be updated to the subsequent

time step in accordance with the procedure outlined in Eq. (27). The history variables are

expressed explicitly in Appendix B. It is now possible to express the fully discretized finite

element equations at the current time step as

[K̄e]k+1{∆e}k+1 = {F e}k+1 − {Q̃e}k+1 (28)

where each of the components in the above equation are given in Appendix B.

3.4. Iterative solution of nonlinear equations using Newton’s method. The fully

discretized finite element equations are nonlinear due to the use of the von Kármán strain

components in the definition of the effective strain tensor ε. In our work, we adopt the

Newton procedure in the iterative solution of the nonlinear finite element equations. The

resulting linearized finite element equations are of the form

[T e]
(r)
k+1{δ∆

e}(r+1)
k+1 = −([K̄e]

(r)
k+1{∆

e}(r)k+1 − {F e}(r)k+1 + {Q̃e}(r)k+1) (29)
12



where {δ∆e}(r+1)
k+1 represents the incremental solution at the (r + 1)th nonlinear iteration.

The total global solution at the (r + 1)th iteration is obtained as

{∆}(r+1)
k+1 = {δ∆}(r+1)

k+1 + {∆}(r)k+1 (30)

The element tangent stiffness coefficient matrix [T e]
(r)
k+1 appearing in the Newton linearization

of the finite element equations may be expressed (using Einstein’s summation convention over

n) as

T e
ij = K̄e

ij +
∂K̄e

in

∂∆e
j

∆e
n +

∂Q̃e
i

∂∆e
j

(31)

All quantities comprising the tangent stiffness matrix are formulated using the solution from

the rth iteration. The partial derivatives are taken with respect to the solution at the current

time step. Formulas for evaluating the components of the element tangent stiffness coefficient

matrix are given in Appendix C.

3.5. Finite element interpolation of dependent variables. It is well-known that low-

order finite elements for beams are prone to locking [34, 31, 33] when quadrature rules

are employed that result in exact integration of the element coefficient matrices and force

vectors. To circumvent the locking phenomena, we consider two philosophically dissimilar

numerical procedures. In the first approach, we employ the lowest order element admissible

in the formulation (i.e., a two-noded element). Selective full and one point Gauss-Legendre

quadrature rules are applied; where reduced integration techniques are employed on all

nonlinear expressions associated with the finite element model. This element is denoted as

an RBT-2-R element (meaning a two-noded reduced integration RBT element). It is worth

noting that this element requires a splitting of the history variables into subsets associated

with the full and reduced quadrature points. In the second approach, we construct the Reddy

beam finite elements using high-polynomial order expansions of the dependent variables, by

systematically increasing the number of nodes per finite element. In this approach, the same

quadrature formulas may be employed in the evaluation of all expressions appearing in the

coefficient matrices and force vectors of the finite element model. The resulting elements

are denoted in this work as RBT-n elements, where n represents the number of nodes per

element.

In the proposed high-order finite element formulation, we employ an unequal spacing of

the nodes within each element. We define the nodal points, within the master element
13



Ω̂e = [−1,+1], in terms of the roots of the following expression

(ξ − 1)(ξ + 1)L′
p(ξ) = 0 in Ω̂e (32)

where Lp (ξ) is the Legendre polynomial of order p [17] and n = p+1 represents the number

of nodes per element. As a result, the quantities ξi, where i = 1, .., n, are the nodal points

associated with Ω̂e. In our formulation we construct the high-order Lagrange interpolation

functions in accordance with the following expression

ψ
(1)
i (ξ) =

(ξ − 1)(ξ + 1)L′
p(ξ)

p(p+ 1)Lp(ξi)(ξ − ξi)
in Ω̂e (33)

The above interpolation functions are often called spectral nodal interpolation functions in

the literature [20]. The high-order Hermite interpolation functions ψ̂
(2)
i associated with the

master element Ω̂e may be calculated as

ψ̂
(2)
i (ξ) =

2n∑
j=1

cj−1
i ξj−1 (34)

The coefficients cj−1
i appearing in the above expression may be determined by imposing the

following compatibility conditions on the interpolation functions

ψ̂
(2)
2i−1(ξj) = −dψ̂

(2)
2i

dξ

∣∣∣∣
ξ=ξj

= δij,
dψ̂

(2)
2i−1

dξ

∣∣∣∣
ξ=ξj

= ψ̂
(2)
2i (ξj) = 0 (35)

where i and j both range from 1 to n. The Hermite interpolation functions ψ
(2)
i associated

with the physical element Ω̄e may be determined as

ψ
(2)
2i−1(ξ) = ψ̂

(2)
2i−1(ξ), ψ

(2)
2i (ξ) = Jeψ̂

(2)
2i (ξ) (36)

where Je is the Jacobian of the element coordinate transformation Ω̂e � Ω̄e. The above for-

mulas may be utilized to generate high-order Lagrange and Hermite interpolation functions

for any number of nodes per element. The standard lowest order two-noded element may

be obtained as a special case. The interpolation functions associated with a six-node RBT

finite element are shown in Fig. 2.

4. Numerical examples

In this section, numerical results are presented and tabulated for the mechanical response

of viscoelastic beam structures obtained using the proposed finite element formulation for
14
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Figure 2. Interpolation functions for a high-order RBT finite element where

n = 6 and i = 1, .., n: (a) Lagrange interpolation functions ψ
(1)
i , (b) Hermite

interpolation functions ψ̂
(2)
2i−1 and (c) Hermite interpolation functions ψ̂

(2)
2i .

the third-order Reddy beam theory. The results presented in this section have been obtained

using the Newton solution procedure described in the previous section. Nonlinear conver-

gence is declared at time tk+1 once the Euclidean norm of the normalized difference between

the nonlinear iterative solution increments (i.e., ||{∆}(r+1)
k+1 − {∆}(r)k+1||/||{∆}(r+1)

k+1 ||), is less

than 10−6.

The material model utilized in the quasi-static numerical studies is based upon the exper-

imental results tabulated by Lai and Bakker [23] for a glassy amorphous polymer material

(PMMA). The Prony series parameters for the viscoelastic relaxation modulus given in Table

1 were calculated by Payette and Reddy [29] from the published compliance parameters [23].

As in the work of Chen [8] and Payette and Reddy [29], we assume that Poisson’s ratio is
15



time invariant. As a result, the shear relaxation moduli is given as

G(t) =
E(t)

2(1 + ν)
(37)

where Poisson’s ratio is taken to be ν = 0.40 [22].

Table 1. Viscoelastic relaxation parameters for a PMMA.

E0 205.7818 ksi
E1 43.1773 ksi τE1 9.1955× 10−1 sec.
E2 9.2291 ksi τE2 9.8120× 100 sec.
E3 22.9546 ksi τE3 9.5268× 101 sec.
E4 26.2647 ksi τE4 9.4318× 102 sec.
E5 34.6298 ksi τE5 9.2066× 103 sec.
E6 40.3221 ksi τE6 8.9974× 104 sec.
E7 47.5275 ksi τE7 8.6852× 105 sec.
E8 46.8108 ksi τE8 8.5143× 106 sec.
E9 58.6945 ksi τE9 7.7396× 107 sec.

4.1. Quasi-static deflection of various thin beams under uniform loading. In this

first example we consider a viscoelastic beam of length L = 100 in. and cross section 1 in. ×
1 in. At t = 0 sec. the beam is subjected to a uniform vertically distributed load q0 = 0.25

lbf/in. Due to symmetry about x = L/2, it is only necessary to model half of the physical

domain. To assess the performance of various finite element discretizations in circumventing

the locking phenomena, we consider the following three sets of boundary conditions:

(1) Hinged at both ends

w0(0, t) = u0(L/2, t) =
∂w0

∂x
(L/2, t) = ϕx(L/2, t) = 0 (38)

(2) Pinned at both ends

u0(0, t) = w0(0, t) = u0(L/2, t) =
∂w0

∂x
(L/2, t) = ϕx(L/2, t) = 0 (39)

(3) Clamped at both ends

u0(0, t) = w0(0, t) =
∂w0

∂x
(0, t) = ϕx(0, t) = 0

u0(L/2, t) =
∂w0

∂x
(L/2, t) = ϕx(L/2, t) = 0

(40)
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Figure 3. Maximum vertical deflection w0(L/2, t) of various viscoelastic
beams, each subjected to a uniform vertically distributed load q0. 2 RBT-
6 elements employed in each finite element discretization: (a) hinged-hinged
beam configuration and (b) pinned-pinned and clamped-clamped beam con-
figurations.
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Table 2. Comparison of the quasi-static finite element solutions for the maxi-
mum vertical deflection w0(L/2, t) of viscoelastic beams subjected to a uniform
load q0 for three different boundary conditions.

Time, t RBT-2 RBT-2-R RBT-3 RBT-4 RBT-6

Hinged-hinged
0 5.4740 7.2840 7.2277 7.2946 7.2980

200 6.1234 8.6052 8.5170 8.6169 8.6217
400 6.1895 8.7473 8.6552 8.7592 8.7641
600 6.2295 8.8340 8.7396 8.8460 8.8510
800 6.2615 8.9035 8.8071 8.9156 8.9207

1,000 6.2886 8.9627 8.8646 8.9748 8.9799
1,200 6.3119 9.0138 8.9143 9.0259 9.0311
1,400 6.3322 9.0584 8.9575 9.0705 9.0758
1,600 6.3499 9.0975 8.9956 9.1098 9.1150
1,800 6.3656 9.1322 9.0293 9.1445 9.1498

Pinned-pinned
0 1.2442 1.2493 1.2452 1.2452 1.2452

200 1.3233 1.3291 1.3242 1.3242 1.3242
400 1.3313 1.3371 1.3322 1.3322 1.3322
600 1.3361 1.3420 1.3370 1.3370 1.3370
800 1.3399 1.3459 1.3409 1.3409 1.3409

1,000 1.3432 1.3492 1.3441 1.3441 1.3441
1,200 1.3460 1.3520 1.3470 1.3470 1.3469
1,400 1.3484 1.3545 1.3494 1.3494 1.3494
1,600 1.3506 1.3566 1.3515 1.3515 1.3515
1,800 1.3525 1.3585 1.3534 1.3534 1.3534

Clamped-clamped
0 0.9037 0.9098 0.9106 0.9108 0.9109

200 0.9918 0.9992 0.9993 0.9995 0.9997
400 1.0007 1.0082 1.0083 1.0084 1.0086
600 1.0060 1.0136 1.0136 1.0138 1.0140
800 1.0103 1.0180 1.0180 1.0182 1.0183

1,000 1.0139 1.0216 1.0216 1.0218 1.0220
1,200 1.0170 1.0248 1.0247 1.0249 1.0251
1,400 1.0197 1.0275 1.0275 1.0277 1.0278
1,600 1.0221 1.0299 1.0298 1.0300 1.0302
1,800 1.0242 1.0321 1.0319 1.0322 1.0323

In Table 2 and Fig. 3 we summarize numerical results for the maximum vertical deflection

of the viscoelastic beam for the three different sets of boundary conditions listed above. The

tabulated results were obtained using 10 RBT-2 elements (11 nodes), 10 RBT-2-R elements

(11 nodes), 5 RBT-3 elements (11 nodes), 3 RBT-4 elements (10 nodes) and 2 RBT-6
18



elements (11 nodes). An equal time increment of ∆t = 1.0 sec. was employed for all time

steps. To insure convergence of the nonlinear solution procedure, the instantaneous elastic

solution (at t = 0 sec.) was obtained through the use of five load steps. At each subsequent

time step, the finite element equations were solved iteratively using the Newton procedure

without employing load stepping. Typically, only 2 or 3 Newton iterations were necessary

to satisfy the nonlinear convergence criterion.

It is interesting to note that the numerical results for all finite element discretizations are

comparable with the exception of the case where the beam is subjected to hinged boundary

conditions at both ends. For this problem, the RBT-2 finite element clearly suffers from

locking. It is evident, however, that polynomial refinement of the solution naturally alleviates

the locking. In fact, the RBT-3 element is almost completely locking free. Overall we find

that this element is less prone to locking (when n is small) than the Timoshenko beam

element employed previously by Payette and Reddy [29]. The results obtained for the RBT-

6 element are spatially fully converged and compare well with the Timoshenko beam results

obtained using high-order polynomial expansions [29].

For the hinged-hinged beam configuration, the vertical deflection coincides with the exact

solution of the geometrically linear theory. In Table 3 we compare numerical results obtained

using 2 RBT-6 beam elements with the exact solution for the Timoshenko beam theory given

by Flügge [14] as

w0(L/2, t) =
5q0L

4

384D2

[
1 +

8(1 + ν)

5κ

(
h

L

)2]
D(t) (41)

where D(t) is the creep compliance and κ is the shear correction factor. The error in the

numerical solution due to temporal integration via the trapezoidal rule tends to over-predict

the deflection of the beam as is evident in Table 3 (where numerical solutions obtained using

various time increment sizes are compared).

4.2. Quasi-static deflection of a thick beam under uniform loading. In this next

example we consider a thick (i.e., L/h < 20) viscoelastic beam to demonstrate the ability of

the Reddy beam finite element formulation to accurately account for deformations associated

with shearing. We modify the thin beam problem of the previous example by letting L = 10

in., q = 25.0 lbf/in and ∆t = 1.0 sec. All other geometric and material parameters are

the same as in the previous example. In Table 4 numerical results are presented for the

transverse deflection of pinned-pinned and clamped-clamped beams. The same number of

elements (per element type) are employed as in the previous example. In Table 4 we also
19



Table 3. Analytical and finite element solutions for the maximum quasi-
static vertical deflection w0(L/2, t) of a hinged-hinged beam under uniform
transverse loading q0.

Maximum vertical deflection, w0(L/2, t)

Time, t Exact ∆t = 0.1 ∆t = 1.0 ∆t = 2.0 ∆t = 5.0 ∆t = 10.0

0 7.2980 7.2980 7.2980 7.2980 7.2980 7.2980
200 8.5429 8.5437 8.6217 8.8493 10.2278 14.7260
400 8.6827 8.6835 8.7641 8.9993 10.4291 15.1493
600 8.7680 8.7689 8.8510 9.0910 10.5524 15.4107
800 8.8364 8.8372 8.9207 9.1645 10.6513 15.6214

1,000 8.8945 8.8954 8.9799 9.2270 10.7356 15.8022
1,200 8.9448 8.9456 9.0311 9.2811 10.8087 15.9597
1,400 8.9886 8.9895 9.0758 9.3282 10.8726 16.0983
1,600 9.0271 9.0280 9.1150 9.3697 10.9288 16.2210
1,800 9.0612 9.0621 9.1498 9.4064 10.9787 16.3306

compare results from the Reddy beam theory with finite element results obtained using a

low order reduced integration finite element model based on the Euler-Bernoulli beam theory

(which does not account for deformations associated with shearing).

Table 4. Comparison of the quasi-static finite element solutions for the
maximum vertical deflection w0(L/2, t) of thick pinned-pinned and clamped-
clamped viscoelastic beams under uniform transverse loading q0.

Maximum vertical deflection, w0(L/2, t)

pinned-pinned clamped-clamped

Time t EBT-2-R RBT-2-R RBT-6 EBT-2-R RBT-2-R RBT-6

0 0.07184 0.07362 0.07367 0.01459 0.01645 0.01653
200 0.08437 0.08643 0.08649 0.01724 0.01943 0.01952
400 0.08571 0.08779 0.08785 0.01752 0.01975 0.01985
600 0.08652 0.08862 0.08869 0.01769 0.01995 0.02004
800 0.08717 0.08929 0.08935 0.01783 0.02010 0.02020

1,000 0.08773 0.08985 0.08992 0.01795 0.02024 0.02033
1,200 0.08821 0.09034 0.09041 0.01805 0.02035 0.02045
1,400 0.08862 0.09076 0.09083 0.01814 0.02045 0.02055
1,600 0.08899 0.09114 0.09121 0.01822 0.02054 0.02064
1,800 0.08931 0.09147 0.09154 0.01829 0.02062 0.02072

4.3. Quasi-static deflection of a thin beam due to time-dependent loading. For this

next example we employ the geometric parameters, material properties and hinged-hinged
20



boundary conditions utilized in the first numerical example. We replace the stationary

uniformly distributed load with the following quasi-static transverse load

q(t) = q0

{
H(t)− 1

τ(β − α)
[(t− ατ)H(t− ατ)− (t− βτ)H(t− βτ)]

}
(42)

where q0 = 0.25 lbf/in, τ = 200 sec. and H(t) is the Heaviside function. The parameters

0 ≤ α ≤ β ≤ 1 are constants whose values may be appropriately adjusted. The load function

above is constant for 0 < t < ατ and decays linearly from t = ατ to t = βτ , after which the

load is maintained at zero. We utilize the above loading function to numerically demonstrate

that the finite element model correctly predicts that the viscoelastic beam will eventually

recover its original configuration upon removal of all externally applied mechanical loads.

The numerical solution for the problem is presented in Figure 4 for various values of α and

β. It is clear that in all cases, the beam tends to recover its original configuration as t tends

to infinity.
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Figure 4. Maximum vertical deflection w0(L/2, t) of a hinged-hinged vis-
coelastic beam subjected to a time-dependent transverse load q(t).

4.4. Fully dynamic response of hinged viscoelastic beams. As a final example, we

consider the fully transient mechanical response of viscoelastic beams under mechanical

loading. For this example we employ a simple three parameter solid model utilized previous
21



by Chen [8]. In the standard three parameter solid model, the relaxation modulus may be

expressed as

E(t) =
k1k2
k1 + k2

(
1− e−t/τE1

)
+ k1e

−t/τE1 (43)

where in the present example k1 = 9.8×107 N/m2 and k2 = 2.45×107 N/m2. The relaxation

time is of the form τE1 = η/(k1+k2) and the material density is taken to be ρ0 = 500 kg/m3.

A constant Poisson ratio of ν = 0.3 is assumed.

We consider a beam with hinged boundary conditions at both ends. The beam length,

width and thickness are taken to be L = 10 m, b = 2 m and h = 0.5 m respectively. We

consider two loading scenarios. In loading scenario (1) a uniformly distributed transverse

load is specified along the entire length of the beam as q(t) = q0H(t) N/m, where q0 = 10.

Likewise, for loading scenario (2) a periodic concentrated force is applied at the center of

the beam as F (t) = q0sin(πt) N, where q0 = 50. In the finite element discretization of

both problems, we employ 2 RBT-6 elements of equal size. As in the previous examples,

symmetry is once again exploited in construction of the finite element meshes. We utilize the

Newmark-β procedure [26] for performing temporal integration of the inertia terms appearing

in the fully transient beam finite element equations. The Newmark integration parameters

are chosen in accordance with the constant-average acceleration method [35]. Both transient

problems are solved over a total time interval of 20 sec. For loading scenario (1) we employ

500 time steps, while 1,000 time steps are utilized for loading scenario (2).

Numerical results for loading scenarios (1) and (2) are presented in Figs. 5 and 6 respec-

tively. In each figure we present both viscoelastic and elastic solutions (where the Young’s

modulus is obtained by taking Eelastic ≡ E(0)). As expected, the viscoelastic effects tend to

add damping to what would otherwise be purely elastic response. In Fig. 5 we present fully

transient viscoelastic results using two different values for η. This problem is also solved using

the quasi-static visoelasticity solution procedure. It is evident that the transient viscoelas-

tic solution approaches the steady-state quasi-static viscoelastic response once a sufficiently

long enough period of time has transpired. For loading scenario (2) the viscoelasticity effects

clearly reduce the overall amplitude of the forced vibrational response. An overall smoothing

of the beam response is also observed for this problem.
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q(t) = q0H(t)
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Figure 5. A comparison of the time-dependent vertical response w0(L/2, t)
(with units of mm) of hinged-hinged beams due to a suddenly applied trans-
verse load q(t). Results are for both viscoelastic as well as elastic beams.
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5. Concluding remarks

In this paper we have presented an efficient finite element framework for the numerical

simulation of the quasi-static and fully transient mechanical response of viscoelastic beam

structures based on the kinematic assumptions of the third-order Reddy beam theory. The

present formulation is applicable for use in the analysis of structures undergoing large trans-

verse displacements, moderate rotations and small strains. The viscoelastic constitutive

equations in the semi-discrete finite element equations were temporally discretized through

the use of the trapezoidal rule and a two-point recurrence formula, resulting in an efficient

temporal integration procedure. The finite element formulation has been successfully im-

plemented numerically using standard low-order reduced integration based finite element

technology as well as a family of elements constructed using high polynomial-order Lagrange

and Hermite interpolation functions. The finite element procedures have been successfully

employed in the numerical simulation of the mechanical response of both quasi-static and

fully transient viscoelastic beams.
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Appendix A: Semi-Discrete Finite Element Equation Components

The components of the partitioned element coefficient matrices and vectors appearing in the

semi-discretized finite element formulation, given in Eq. (14), may be determined as

M11
ij =

∫ xb

xa

I0ψ
(1)
i ψ

(1)
j dx (A1a)

M12
ij =M21

ji = 0 (A1b)

M13
ij =M31

ji = 0 (A1c)
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M22
ij =

∫ xb

xa

(
I0ψ

(2)
i ψ

(2)
j + c21I6

dψ
(2)
i

dx

dψ
(2)
j

dx

)
dx (A1d)

M23
ij =M32

ji = −
∫ xb

xa

J4
dψ

(2)
i

dx
ψ

(1)
j dx (A1e)

M33
ij =

∫ xb

xa

K2ψ
(1)
i ψ

(1)
j dx (A1f)

K11
ij =

∫ xb

xa

E(0)D0
dψ

(1)
i

dx

dψ
(1)
j

dx
dx (A2a)

K12
ij =

1

2
K21

ji =
1

2

∫ xb

xa

(
E(0)D0

∂w0(x, t)

∂x

)
dψ

(1)
i

dx

dψ
(2)
j

dx
dx (A2b)

K13
ij = K31

ji = 0 (A2c)

K22
ij =

∫ xb

xa

[
1

2
E(0)D0

(
∂w0(x, t)

∂x

)2
dψ

(2)
i

dx

dψ
(2)
j

dx
+G(0)Âs

dψ
(2)
i

dx

dψ
(2)
j

dx
(A2d)

+E(0)c21D6
d2ψ

(2)
i

dx2
d2ψ

(2)
j

dx2

]
dx

K23
ij = K32

ji =

∫ xb

xa

(
G(0)Âs

dψ
(2)
i

dx
ψ

(1)
j − E(0)L4

d2ψ
(2)
i

dx2
dψ

(1)
j

dx

)
dx (A2e)

K33
ij =

∫ xb

xa

(
E(0)M2

dψ
(1)
i

dx

dψ
(1)
j

dx
+G(0)Âsψ

(1)
i ψ

(1)
j

)
dx (A2f)

Λ1
i (t, s) =

∫ xb

xa

Ė(t− s)D0
dψ

(1)
i

dx

[
∂u0(x, s)

∂x
+

1

2

(
∂w0(x, s)

∂x

)2]
dx (A3a)

Λ2
i (t, s) =

∫ xb

xa
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dψ
(2)
i

dx
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∂x
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1

2

(
∂w0(x, s)
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+ Ė(t− s)
d2ψ
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c21D6
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∂x2
− L4
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+Ġ(t− s)Âs
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+Ġ(t− s)Âsψ
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(
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F 1
i =

∫ xb

xa

ψ
(1)
i fdx+ ψ

(1)
i (xa)Q1 + ψ

(1)
i (xb)Q5 (A4a)

F 2
i =

∫ xb

xa

ψ
(2)
i qdx+Q2ψ

(2)
i (xa) +Q6ψ

(2)
i (xb) +Q3

(
−dψ

(2)
i

dx

)∣∣∣∣
x=xa

(A4b)

+Q7

(
−dψ

(2)
i

dx

)∣∣∣∣
x=xb

F 3
i = Q4ψ

(1)
i (xa) +Q8ψ

(1)
i (xb) (A4c)

In the above equations we have made extensive use of the following constants

Âs = D0 − 2D2c2 +D4c
2
2

L4 = c1(D4 −D6c1)

M2 = D2 − 2D4c1 +D6c
2
1

(A5)

Appendix B: History Variables and Fully-Discrete Finite Element

Equation Components

The history variables in Eq. (27) may be expressed explicitly at tk+1 as

1
lmX

1(tk+1) =
∆tk+1

2
D0

{
˙̄El(∆tk+1)
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Likewise, the components of the fully discretized finite element coefficient matrices and

vectors, given in Eq. (28), may be evaluated at the current time step tk+1 as

K̄11
ij =

∫ xb

xa

(
E(0) +
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2
Ė(0)
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i

dx
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Ġ(0)

)
Âs
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The quantities Q̃α
i (tk+1) are expanded as

Q̃α
i =

nα∑
j=1

jQ̄α
i (B3)
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where n1 = 1, n2 = 3 and n3 = 2, such that the components jQ̄α
i may be defined as
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Ė(∆tk+1)
dψ

(1)
i

dx

(
M2

∂ϕx(x, tk)

∂x
− L4

∂2w0(x, tk)

∂x2

)
dx (B4e)

+
NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τ
E
l
dψ

(1)
i (xm)

dx
1
lmX

3(tk)Wm

2Q̄3
i (tk+1) =

∆tk+1

2

∫ xb

xa
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Appendix C: Element Tangent Stiffness Matrix Components

The components of the element tangent stiffness coefficent matrix, given in Eq. (31), may

be determined as

T 11
ij = K̄11

ij (C1a)
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Clearly the tangent stiffness coefficient matrix is symmetric.
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[15] A. C. Galucio, J.-F. Deü, and R. Ohayon. Finite element formulation of viscoelastic sandwich beams

using fractional derivative operators. Computational Mechanics, 33:282–291, 2004.

30



[16] D. C. Hammerand and R. K. Kapania. Geometrically nonlinear shell element for hygrothermorheolog-

ically simple linear viscoelastic composites. American Institute of Aeronautics and Astronautics Inc,

38:2305–2319, 2000.

[17] R. Hamming. Numerical Methods for Scientists and Engineers. Dover Publications, Mineola, N.Y., 2nd

edition, 1987.

[18] P. R. Heyliger and J. N. Reddy. A higher-order beam finite element for bending and vibration problems.

Journal of Sound and Vibration, 126(2):309–326, 1988.

[19] A. R. Johnson, A. Tessler, and M. Dambach. Dynamics of thick viscoelastic beams. Journal of Engi-

neering Materials and Technology, 119(3):273–278, 1997.

[20] G. E. Karniadakis and S. J. Sherwin. Spectral/hp Element Methods for CFD. Oxford University Press,

Oxford, 1999.

[21] Timothy C. Kennedy. Nonlinear viscoelastic analysis of composite plates and shells. Composite Struc-

tures, 41(3-4):265–272, 1998.

[22] D.W. Van Krevelen. Properties of Polymers. Elsevier, Amsterdam, 3rd edition, 1990.

[23] J. Lai and A. Bakker. 3-D Schapery representation for non-linear viscoelasticity and finite element

implementation. Computational Mechanics, 18:182–191, 1996. 10.1007/BF00369936.

[24] D. J. McTavish and P. C. Hughes. Finite element modeling of linear viscoelastic structures - the GHM

method. In AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,

pages 1753–1763, Dallas, TX; United States, April 1992.

[25] D. J. McTavish and P. C. Hughes. Modeling of linear viscoelastic space structures. Journal of Vibration

and Acoustics, 115(1):103–110, 1993.

[26] N. M. Newmark. A method of computation for structural dynamics. Journal of Engineering Mechanics,

85:67–94, 1959.

[27] B. F. Oliveira and G. J. Creus. Viscoelastic failure analysis of composite plates and shells. Composite

Structures, 49(4):369–384, 2000.

[28] A. Pálfalvi. A comparison of finite element formulations for dynamics of viscoelastic beams. Finite

Elements in Analysis and Design, 44(14):814–818, 2008.

[29] G. S. Payette and J. N. Reddy. Nonlinear quasi-static finite element formulations for viscoelastic Euler–

Bernoulli and Timoshenko beams. International Journal for Numerical Methods in Biomedical Engi-

neering, 26(12):1736–1755, 2010.

[30] J. N. Reddy. A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics,

51:745–752, 1984.

[31] J. N. Reddy. On locking-free shear deformable beam finite elements. Computer Methods in Applied

Mechanics and Engineering, 149(1-4):113–132, 1997.

[32] J. N. Reddy. Theory and Analysis of Elastic Plates. Taylor and Francis, Philadelphia, 1999.

[33] J. N. Reddy. Energy Principles and Variational Methods in Applied Mechanics. John Wiley and Sons,

Ltd, New York, 2nd edition, 2002.

31



[34] J. N. Reddy. An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford,

2004.

[35] J. N. Reddy. An Introduction to the Finite Element Method. McGraw-Hill, New York, 3rd edition, 2006.

[36] J. N. Reddy. An Introduction to Continuum Mechanics with Applications. Cambridge University Press,

New York, 2008.

[37] J. C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer-Verlag, Berlin, 1998.

[38] R. L. Taylor, K. S. Pister, and G. L. Goudreau. Thermomechanical analysis of viscoelastic solids.

International Journal for Numerical Methods in Engineering, 2(1):45–59, 1970.
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